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ABSTRACT

Let (X],Y]) ’(Xn’Yn) be iid rv's with pdf f(x,y) and let m(x) =

E(Y|X = x) = fyf(x,y)dy/fx(x) be the regression function of Y on X. The
function m(x) is estimated by mn(x) a solution of (nh)~ z K({x- X; )/h)v(Y -+) =0

. i=1
for some odd and bounded Y-function making mn(x) a robust estimate of m(x).

Soataay 2N el

_ Probabilities of maximal deviapioﬁ of |m (x) - m(x)] are computed in a

i simiiar wav as in Bickel and Rosenblatt (1973) for density estimation and

PR

in Johnston (1982) for nonparametric regression function estimation.
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1. BACKGROUND AND INTRODUCTION

Nadaraya (1964) and Watson (1964) independently proposed the following
kernel estimator

1

1

1
J

Ho~13

(1.1) m;(x) = (nhn)'

hr~13
—r

K((x-X;)/h )Y, /[(nh )" K((X-Xj)/hn)]

1

of the regression function m(x) = [y f(x,y)dy/fx(x) where f,(x) denotes the

K¢
marginal density of X,K (+) is a kernel and {hn} is a sequence of positive

constants ("bandwidth"). Basically this estimator averages the Y's around }?
X = x motivated from the integral formula for m(x) above. The numerator is
a weighted local average of the Y's while the denominator is a density esti-
mate of fx(x).

It is clear that occasional outliers generated by heavy tailed condi-

tional densities f(y|x) introduce smooth peaks and troughs in the estimated s
curve m;(x). Such outliers occur quite often in practice. (Ruppert et al., §
1982 Figure 7 or Bussian et al., 1982). To avoid this misleading property

of m;(x) due to spiky Y-observations we introduce a robust estimate, the

M-smoother, mn(x) as the solution of
N
(1:2) () ] Kk )/ )o(Yy- o) = o,

where ¥ denotes a bounded, odd and continuous function. WNote that if w(u) =

u, then m is the Nadaraya-Watson estimator m; . Bias and variance rates for
mn(x) with K as the uniform window where obtained by Stuetzle and Mittal (1979),
robustness properties, consistency and asymptotic normality of mn(x) were
considered by Hirdle (1982). For the case of nonrandom design, i.e. X; attains

fixed values, we may refer to Hardle and Gasser (1982). In this paper we show that

ey




-2-
(1.3) P{(2c log n)%[oszpli(mn(t) - m(t))-r(t)l/A(K)%- dn] < Xy

- exp(-2 exp(-x)) ,

where &, r(t), x(K), d, are suitable scaling parameters.

The result (1.3) improves upon that of Johnston (1982) in a number of
ways. First, Johnston obtains results like (1.3), but for estimates different
from the Nadaraya-Watson estimator (1.1); our result (1.3) of course applies
to the Nadaraya-Watson estimator as a special case. Secondly, (1.3) holds for
a much broader class of estimators. Finally, we obtain (1.3) under assumptions

weaker than those needed by Johnston.

2. ASSUMPTIONS AND RESULTS

We write h for the bandwidth hn from here on unless there is no need to

do so. We make use of the following assumptions,

(A1) the kernel K(-) is positive has compact support [-A,A] and is
continuously differentiable.

L 5/2
h +~0

(A2) (nh)'%(log n)3/2 >0 (n lTog n)
(nh3)‘](1og n)2 < M, M a constant .

(A3) h'3(1og n) [ f (y)dy =0(1), f (y) the marginal density
yl>a, Y Y

}f\’)

n=1 @ sequence of constants tending to infinity as n - o,

of Y, {an

(A4) Oinf]IQ(t)l * Go > 0, where g(t) = E(v'(Y-m(t))][X=t)-f,(t)
<-‘t <

(AS) the regression function m(x) is twice continuously differentiable, the
conditional densities f(y{x) are symmetric for all x, ¥ is piecewise
twice continuously differentiable.

We need some more definitions before we discuss the assumptions.
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Define
o2(t) = E(¥E(Y-m(t))|X=t)
n
Ha(£) = (nh) ™! T K((x-X{)/h)¥(Y -m(t))
i=1
n
() = (nh)™" T K((x-X;)/h)¥* (Y;om(t)).

i=1

We further assume that oz(t) and fx(t) are differentiable.

Assumption (A1) on the compact support of the kernel could possibly be

e e

P

relaxed introducing a cutoff technique as Csﬁrgg and Hall (1982) for density

Cicail AT e i B Riti

estimators. Assumption (A2) has purely technical reasons: to keep the bias down

and to ensure the vanishing of the nonlinear remainder terms. Assumption
(A3) appears in a somewhat modified form also in Johnston's paper (1982).
When we want to apply the following theorem to the Nadaraya-Watson estimator

-3
m;(x) we have actually to restate (A2) as h™ (log n )] { yzfy(y)dy (which :
yl>a,

is assumption Al in Johnston (1982)). Assumption (A5) stating the symmetry
of the conditional densities is common in robustness considerations (Huber,

1981). It quarantees that the only solution of [¥(y-<)f(y|x)dy = 0 is m(x) =

E(Y[X=x). If we had skew distributions then we would no longer estimate the

conditional mean but rather a conditional quantile such as the median.

Theorem i

-5 Ao
Let h =n™%, 1/5 < 6§ < 1/3 and Ax(K) = [K°(u)du and
-A
(28 10g n);i + (28 log n)'%{1og(c](K)/n%) + %[log & + log log n]} ,
if ¢)(K) = K(R) + KE(-A)/[2A(K)] > O
(26 Tog n)* + (28 Tog n)™* {log (cy(K)/2M)}

dy

Q.
]

A
otherwise with c,(K) = {[K'(u)]zdu/[ZA(K)] :

Then (1.3) holds with




- L)

r(t) = (nh)%a(t) [4(2)f, (1)]

This theorem can be used to construct uniform confidence intervals for the

regression function as stated in the following corollary.

Corollary: Assuming the theorem above holds, an approximate (1-.)x 100
confidence band over [0,1] is

)

m(t) + (nh) 2LeA(6) £, (0A(K)T g7 (£)[dy+e () (25 Tog n) %]« [ (K)]?

where c(a) = log 2 - log|log(1-a)|.
The proof is essentially based on a linearization argument due to Taylor series
expansion. The leading linear term will then be approximated in a similar way
as in Johnston (1982), Bickel and Rosenblatt (1973). The main idea behind the
proof is a strong approximation of the empirical process of {(Xi,Yi)}?zl by a
sequence of Brownian bridges (with two dimensional time) as provided Tusnady
(1977).

It follows by Tavlor expansions applied to the defining equation (1.Z2) that

(2.1) my(t) - m(t) = (H_(t)-EH_(t))/q(t) + R (t)

where [Hn(t)—EHn(t)]/q(t) is the leading linear term and

(2.2) R (t) = H (t)[q(t)-D,(t)1/D, (t)~a(t)] + EH_(t)/a(t)

n .
+ %(mn(t)-m(t))2 . [Dn(t)]‘]- (nh)-]‘E]K((X-Xi)/h)?"(Yi-m(t)+rn(1)(t)),
]:
D))~ m (0l ]
is the remainder term. In the third section it is shown (Lemma 3.1) that
= = %
R Il = Ozzglan(t)l = o ((nh Tog n)™3).

Furthermore the rescaled linear part

Yo(8) = (nh)i[o?()6,(6) 175K (t) - EH_(t))

A N u-x"‘_""'t'“"'?rft::J

A .-
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is approximated by a sequence of Gaussian processes, leading finally to the
following process
- -% - 3
Vg ,(t) = h7% [K((t-x)/h) dH(x),
as in Bickel and Rosenblatt (1973).

We also need the Rosenblatt transformation (Rosenblatt, 1952).

TO6y) = (Fyy (xly) s Fy(y)) J

| which transforms (Xi’Yi) into T(Xi’Yi) =(X%,Y%) mutually independent uniform
rv's. With the aid of this transformation Theorem 1 of Tusnady (1977) may be '

applied to obtain the following lemma.

Lemma 2.1: On a suitable probability space there exists a sequence of fﬂ
Brownian bridges Bn such that ;§
supZ, (x,y)-B (T(x,y)| = O(n'%(log n)2) a.s., :j
Xy _
where Zn(x.y) = n%[Fn(x,y)-F(x,y)] denotes the empirical process of {(Xi,Yi)L?zl. 1

Before we define the different approximating processes let us first rewrite
Y (t) as a stochastic integral with respect to the empirical process Zn(x,y),

n
Vo(t) = 75" () T fK((E-x) /) (y-m(1))dZ, (x,3) 5 o' (1) = o°(t) f,(t).

The approximating processes are now

Yo nlt) = (hg(t) H [K((t-x)/n)¥(y-m(t))dZ, (x,y)
3 I‘n

where T = {lyl= a t, a(t) = E(Wz(

ym(£))+1(lyls ap) [xet)+f (1)

V) () = (hg(t))'%{IK((t-x)/h>W(y—m<t)> a8, (T(x.y)),
n
: {B,} being the sequence of Brownian bridges from Lemma 2.1.
a Y2,n(t) = (hg(£)) [ [K((t-x)/n)¥(y-m(t)) W (T(x,y))
r

n

{Nn} being the sequence of Wiener processes satisfying

Bn(X',Y') = Nn(x', y') = X'y'wn(]’])
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Y3 a(t) = <ng<t))‘5[fK<<t-x)/h)v(y~m<x)) dh, (T(x,5))
‘n
Vg n(t) = )72 fg(x) K((t-x)/h)du(x)
Vs o(t) = ™3 K ((t-x)/h)dW(x),

‘W(+): being the Wiener process on (-«,:).

Lemmata 3.2 to 3.7 ensure that all these processes have the same limit distribu-

tions. The results then follows from the following lemma

Lemma 2.2 (Bickel and Rosenblatt (1973)). Let d_, A(K), & as in the th

Let
Ve (t) = hT3K((t-x)/h) dH(x).
Then -X
P((28 Toa m)™ sup | Yo () [/DM(K)T - a7 < x) - &7
0=t
3. PRQOFS

We show first that {{RnH
Ost=l
L

2

desired rate (nh log n)

Lemma 3.1: For the remainder term Rn(t) defined in (2.2) we have

, - -k
(3.1) IR, IE= op((nh Tog n)7?)
Proof: First we have by the positivity of the kernel K and |y"| - ¢,
. -1 !
q(t))] {l[Hn | il

Rl L inf (10, (2)

m-n|[ 2. [ inf Jo (£)]177

O<t<]

+ 0

where f_ = nh) f K({x~X, )/h).
i=1

The desired result (3.1) will then follow if we prove the following:

- o (n"nk -
(3.2) I Hpll = 0 (n™*h™%: (10g n)™%)

sup fRn(t)f vanishes asymptotically with the
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(3.3) 9D . =0 (n-%h“(]og n)'%)
(3.4) CFH = uinT)
; Ty -1 -k
(3.5) ?Jmn—mjj = op((nh) *(Tog n) ).

L L ..
Define U (t) < r*h*(log n)*[H_(t)-EH (t)].
We first show that Un(t) R0 for all t. This follows from Markov's inequality

since

n
IREESAARCR
where U, (£) = 07>/ *n73/4 (109 ) 5TK((£-X, ) /)Y, m(£))-EK((£-K) /h) - (y-m(t)) ],
are iid rv's and thus
PLIU (1)) - 2071 (T0g n) -h TV EKC((£-X)/h) = (Yom(t)) |

The RHS of this inequality tends to zero since
n~TE((E-X /)2 () = h T ARECCeud m)E(E (Y-l ) X0 Fy fu)du
~ ()£, (1)« [k (u)du
by continuity of vz(t) and fx(t).
Next we show the tightness of Un(t) using the following moment condition

(Billingsley, 1968, Th. 15.6)

where C2 is a constant.

By the Schwarz inequality,

B U, (t)-u, (ty)

n -1Un(t2)-U ()

n
L

ELU,(8)-U (815 EQU, (£,)-U (£)]%1% .

It suffices to consider only the term E{Un(t)-Un(t])]2 .

Using the Lipschitz continuity of K,¥,m and assumption (A2) we have

{E[Un(t)-Un(t])]Z}%

—— dateh.._ st it i, el TR\ Gt [T K 5 bt

e i e o m
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(Toq n)(nh)-3/2 . [[A+B]2

CA(nh)'%(1og n)a t-t]f + C ‘h'3/4(1og n)g- t-t]. - C,e t-t

p("
n

where A = © K((t-X.)/h)[(Y -m(t))-¥(Y,-m(t,))]
i=]

B =
i

- ~13

]~( =m(ty I IKC(ty =X, ) /h) -K((t-X,)/h) ],

and CA’ CB are Lipschitz bounds for +, m, K.

Since (3.4) follows from the well-known bias calculation
EH () = h™!IK((t-u)/R)EC: (y=n(t)) X=u)f, (u)du = O(h

where O(hz) is independent of t (Parzen, 1962) we have from assumption (A2)

1

. -k -
that jEHn;‘ = o{(nh) *{log n) %).
Statement (3.2) thus follows using tightness of Un(t) and the inequality

Hoo - H -EH_ '+ |IEH
" n n' n'

Statement (3.3) follows in the same way as (3.2) using assumption (A2)
and the continuity properties of K,¥',m
Finally from Hdrdle and Luckhaus (1982), where uniform continuity of

mn(t)-m(t) is shown, we have

1. 1.
T oem' = :
mpemt = 0, ((nh) #(Tog )7,

which implies (3.5)

Now the assertion of the Temma follows since by tightness of Dn(t),

Olzf] D ( )1 -—p--qO and thus
Ryl = 0 ((nh) ™ (Tog m) ™) (1 + 1 £, 1)
Finally by Theorem 3.] of Bickel and Rosenblatt (1973) ]Ifnll = Op(l).
thus the desired result }lR | = (nh) (1og n)—%) follows. In the nonrobust

case, i.e. ¥(u) = u, the rema1nder term Rn reads

= * -1 -
(3.6) Rn = [mn - m][fx-fn]fX + E(mn-mfn)/fX ,

-1 "
} K((x=X,)/n)Ys.

where mn(x) = {nh)
i=]

BT SR s e

i
i

I
1

-
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Johnston (1982) proved that (ﬁn—E mn)/f has the desired asymptotic
distribution as stated in our Theorem.

So if we apply the recent result of Mack and Silverman (1982) or Hdrdle
and Luckhaus (1982) to I!m;-mlland the wei1 known result from Bickel and
Rosenblatt (1973) to {[fx-fn[{ we may conclude that the first term on the RHS
of (3.6) is op((nh)'%(]og n)'%). The second term in (3.6) is

[h™ fK((t-u)/h)om(u) F(u)du - m(t)h™) [K((t-u)/h)F(u)dul/f, (t)
which is by the same calculations as mentioned above (Parzen, 1962) of the
order O(hz). This shows that our result generalizes Johnston's paper. OQur
theorem says also that the confidence bounds are smaller. Johnston had

E(Y2$X=t) as a factor for the asymptotic confidence bound, we have

w
—
t
—
i

var(Y|X=t) which is in general smaller than sz(t). We now begin

—

(o d

~—
i

with the subsequent approximations of the processes Y0 n to YS n’

Lemma 3.2:
L
1 ¥g.n~Y1 il = 0((nR) (10g n)?) a.s.

Proof: Let t be fixed and put L(y) = ¥(y-m(t)) still depending on t.
Use integration by parts and obtain:

JILIK((e=x)/h)dz, (x,y) =

n
A a
= [ " Ly)K(W)dz (t-heu,y) =
u=-A y=-a,
A4 A
= [ [ 7 (t-h cuy)dL(y)k(u)] + L(a )f Z (t-h-u,a idK(u)
-A -3, -A

A a
—L(-an) jZn(t-h-u, -an)dK(u) + K(A)[-gnln(t-h-u,y)dL(y)

+L(an)ant-h-A,an)-L(-an)Zn(t-h-A,-an)]

n
-K(-A)L [ Z,(t+h-R,y)dL(y) + L(ay)Z (t+h.A,a,)
-a

-L(-a )2, (t+heA,-a )] .

e e o et -
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If we apply the same operations to Y] n with Bn(T(x,y)) instead of Zn(x,y)

and use Lemma 2.1 we finally obtain

2

Oszp]hB Q(t)%iYétz - Y]’n(t)} = 0((nh)'%(loq n)%) a.s.

. e ———

usina the differentiability and boundedness of ..

Lemma 3.3:

Proof: Note that the Jacobi of T(x,y) is f(x,y) hence

T e o . AN —E ——

IO ERANCGIET *ff EIK((£-x)/h) F(x,y)dxdy | [W, (1,1}
It follows that ;
h'ZIiY] nYo gl W (1,0) g% - Osup]h'] I (y-m(t))K({t-x)/h) | f(x,y)dxdy
LY C oy St‘ I

‘n
-1
Since || a ¢, is bounded by assumption and . is bounded we have

=L < Y . -1 - =
|;Y]’n‘Y2’ni‘${wn(],])l C4 h™ J(K((t-x)/h))dx Op(l).
Lemma 3.4:
; Y. = 5
“Y2,n Y3,n‘i Op(h )
Proof: The difference in n(t\-Y3 n(t)[ may be written as

[(a(t)R) ™2 fTuly-m(t))-¢Cy-m(x ) IK((t-x)/h)dW (T(x,y)) |
!
n

If we use the fact that ¢,m are uniformly continuous this is smaller than
h™la(t)] %0, ()

and the lemma thus follows.

Lemma 3.5:

0_(h?)

||Y4 n 5 nII p

Proof:

[¥g n(8)-Yg (8= 0721 (EEEJI7 -DK((E-x)mIau(x) | <
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A ;
h‘%!f W(t-hu) {[Q(S(‘?) 17 - 11 KO du!

-A

+

™Ik e-na) (LAY )

+

h'ﬁzk(-A)w(t+hA){[915%%%5)]% - 1}

= S]’n(t) + Sz,n(t) + 53,n(t) , Say.

The second term can be estimated by

h™%j's, < K(A)» sup |W(t-Ah)|+ sup h™'|{[ (t-Ah) g% 1
2. Ost<] Ost<] g(t

by the mean value theorem it follows that
-k .
h72 s, oll= 0p(1).

The first term S is estimated as follows.

1,n
A

) a(t) = Ih"[Aw(t-uh){K'(u)([i(gif%’,‘l 7% -1} du

A
(t-uh) y-pg' (t-uh)
-5f W(t-un)K(w) By ) gy Jaul

= [Ty p(t) = T, (D)1, say.

A

hr < C5 . jAlw(t-hu)]du = Op(l) by assumption on g(t) = o

2.nll's

To estimate T] . again use the mean value theorem to conclude that

]

1,rg{t-uh) %
It 9 ]

sup h~ T

-1 <C « |ul
0-t<] 6
hence

A
1Ty ol = Cr sup [ IH(t-huk: (wuldu = 0,(1).

Since S3 n(t) is estimated as 52 n(t) we finally obtain the desired result.

The next lemma shows that the truncation introduced through {an} does not

affect the limiting distribution.

(t)-f (t).

o g ..‘....WA—J

M e v ]
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Lemma 3.6:

1 ¥y=Yg nll = 05((10g n)79).

Proof: We shall only show that g'(t)'%h';i /I w(y-m(t))K((t-x)/h)dZn(x,y)
R-T

fulfills the lemma. n

The replacement of q'(t) by g(t) may be proved as in Johnston (1982). The

quantity above is less than h'J’ilig'JLill-ll{| lff }w(y-m(‘))K(('-X)/h)dZ(x,Y)l|.
yl*a,

It remains to show that the last factor tends to zero at a rate Op((log n)Ji).

We show first that

V() = (Tog m)* ™% [ y(y-m(t))K((t-x)/h)dZ,(x,y)
{yl>a,}

—B~» 0 for all t

and then we show tightness of Vn(t), the result then follows.

. N
vV (t) = (Tog n)%(nh)'?iz {w(Yi-m(t)I{|y1>an}(Yi)K((t-Xi)/h)

1
- EW(Yi'm(t))‘I{ I.Y|>a }(Y.I)K((t‘x‘)/h)}
n

=) X .(t)
(Ly0n,i

3

e

where {Xn i(t)}?=1 are iid for each n with EXn i(t) =0 for all t « [0,1].

We have then

EXC 4(£) < (log n)(nh)-]sz(Yi-m(t))I{ly|>an}(Yi)K2((t-Xi)/h)
2 =12
< -AEEZA K™(u)+(Tog n)(nh) " Ey(Y,- m(t))I{Iy\>an}(Yi)
hence
V(8)) = ECT X L (£)2 = nemxd
var{V (t)} = E( } n,i (D7 = neExy ()

i1
2, \-1
< sup K'(wh '(log n) [ f (y)dy-M,
-A<u<A {|y|>an} y

where Mw denotes an upper bound for wz.

|
|
i

o
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This term tends to zero by assumption (A3). Thus by Markov's inequality we

conclude that

Vn(t) P, for all t ¢ [0,1].

To prove tightness of {Vn(t)} we refer again to the following moment condition

as stated in Lemma 3.1.
E{IVn(t) - Vn(t])l-]vn(tz)-vn(t)l} < C"(tz-t]
C' denoting a constant, t ¢ [t],tz].

We again estimate the left hand side by Schwarz's inequality and estimate each

factor separately.

n
ELV, (£)-V, ()% = (log n)(nh)“z{iz]wn<t,t],xi,vi)-r{lyl>a -
n

v,

- E(Wn(t,t],xi,Yi)-I ;

{|y|>an}
where ¥ (£,£),0;5¥;) = 9(Y;-m(£)IK((£-X;)/h) - (Y -m(£1)K( (£ =X ) /h)
Since ,m,K are Lipschitz continuous it follows

(ELV, (£)-Y, (£,)1%)

< Cye (Tog n) ™32 et [-{ | fyw)dy};i
{[y|>an}

If we apply the same estimations to Vn(tz)'vn(t]) we finally have
2 -3
ECIV(E)-V (e =1V (£5) =V (£) [} < C5(Tog n)h™[t-t, || ty-t]

. [ f (y)dy
{lyl>an} y

< C'e t2-t]|2 since te[t],tz] .

by assumption (A3).
Lemma 3.7: Let A(K) = sz(u)du and Tet {d } as in the theorem. Then
k] %
(28 Tog m)7L[I Y5 1/DM(K)T? - 4]

has the <ame asymptotic distribution as

(25 1og M L|| ¥, N /DA(K)T - 4]

N
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(t) is a Gaussian process with

(t) =0

Proof: Y3,n

EY3,n

and covariance function

e

.

ry(tyaty) = EYy (t)¥5 (L))

)

[q(t])g(tz)]'%h']{fwz(y-m(X))K((t]-x)/h)K((tz-X)/h)f(x.y)dxdy-

. .

n

= 07 g (t;)a(t,) T2 [P y-m(x)) £y |x)dyK( (£ =x) /h)K((t,=x)/h)  (x)dx
" ]
= h'][g(t])q(tz)]'%fg(X)K((t]-x)/h)K((tz-X)/h) dx é
= r4(t1,t2) the covariance function of the Gaussian process Y4,n(t)’ which f%
proves the lemma. {
1
]
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